Anzeige

Technisches Englisch
Yolks and shells improve recharcheable batteries

Elektrotechniker sollten englischsprachige Dokumentationen und Pläne lesen können. Dieser Beitrag erleichtert den Zugang zur englischen Sprache und vermittelt elektrotechnische Fachausdrücke.

reating an electrode made of nanoparticles with a solid "shell" and a "yolk" inside that can change size again and again without affecting the shel

reating an electrode made of nanoparticles with a solid "shell" and a "yolk" inside that can change size again and again without affecting the shel (Foto: pixabay.com)

One big problem faced by electrodes in rechargeable batteries, as they go through repeated cycles of charging and discharging, is that they must expand and shrink during each cycle – sometimes doubling in volume, and then shrinking back.

This can lead to repeated shedding and reformation of its “skin” layer that consumes lithium irreversibly, degrading the battery’s performance over time. Now a team of researchers at MIT and Tsinghua University in China has found a novel way around that problem: creating an electrode made of nanoparticles with a solid “shell”, and a “yolk” inside that can change size again and again without affecting the shell. The innovation could drastically improve cycle life, the team says, and provide a dramatic boost in the battery’s capacity and power.

The new findings, which use aluminum as the key material for the lithium-ion battery’s negative electrode, or anode, are reported in the journal Nature Communications, in a paper by MIT professor Ju Li and six others. The use of nanopartic les with an aluminum yolk and a titanium dioxide shell has proven to be “the highrate  champion  among  high-capacity anodes,” the team reports.Most present lithium-ion batteries – the most widely used form of rechargeable batteries – use anodes made of graphite, a form of carbon. Graphite has a charge storage capacity of 0.35 ampere-hours per gram (Ah/g); for many years, researchers have explored other options that would provide greater energy storage for a given weight. Lithium metal, for example, can store about 10 times as much energy per gram, but is extremely dangerous, capable of short-circuiting or even catching fire.

Silicon and tin have very high capacity, but the capacity drops at high charging and discharging rates. Aluminum is a low-cost option with theoretical capacity of 2 Ah/g. But aluminum and other high-capacity materials, Li says, “expand a lot when they get to high capacity, when they absorb lithium. And then they shrink, when releasing lithium.” This expansion and contraction of aluminum particles generates great mechanical stress, which can cause electrical contacts to disconnect. Also, the liquid electrolyte in contact with aluminum will always decompose at the required charge/discharge voltages, forming a skin called solid-electrolyte interphase (SEI) layer, which would be ok if not for the repeated large volume expansion and shrinkage that cause SEI particles to shed. As a result, previous attempts to develop an aluminum electrode for lithium-ion batteries had failed.That’s where the idea of using confined aluminum in the form of a yolk-shell nanoparticle 

came in. In the nanotechnology business, there is a big difference between what are called “core-shell” and “yolk-shell” nanoparticles. The former have a shell that is bonded directly to the core, but yolk-shell particles feature a void between the two – equivalent to where the white of an egg would be. As a result, the “yolk” material can expand and contract freely, with little effect on the dimensions and stability of the “shell.” “We made a titanium oxide shell,” Li says, “that separates the aluminum from the liquid electrolyte” between the battery’s two electrodes. The shell does not expand or shrink much, he says, so the SEI coating on the shell is very stable and does not fall off, and the aluminum inside is protected from direct contact with the electrolyte. ... 

Massachusetts Institute of Technology (MIT)

Vocabulary

EnglischDeutsch
aluminum (US) aluminium (UK)Aluminium
attemptVersuch
bondkleben, binden
came inins Spiel kam
coatingSchicht
contractSchicht, Beschichtung
coreKern
decomposezerlegen, zerfallen, zersetzen
degradeabbauen, herabsetzen, verschlechtern
disconnectVerbindung trennen, abklemmen
dropTropfen; abfallen
expandsich ausdehnen
faceausgesetzt sein, sich gegenüber sehen
failmisslingen, fehlschlagen
has proven to behat sich erwiesen als
improveverbessern
irreversiblyirreversibel, unumkehrbar
novelneuartig
rechargeablewiederaufladbar
repeatedwiederholt
requireerfordern
sheddingAblösung, Häutung, Abwerfen
shellSchale
short-circuitKurzschluss; kurzschließen
shrinkschrumpfen
sizeGröße
skinHaut
tinZinn
voidLeere, Nichts, Hohlraum
weightGewicht
yolkEigelb, Dotter

Autor: P. Zillmer

Lesen Sie den Artikel in unserem Facharchiv.

Kommentare

botMessage_toctoc_comments_926
Anzeige